CyberSecurity is a tricky area, where intuition may often mislead as attacks often exploit subtle vulnerabilities, which our intuition fails to consider.
This makes this area challenging, and interesting; in particular, in this area, intuition is a dangerous guide, and careful, adversarial thinking is crucial. Indeed, for
such an applied, systems area, precise definitions, and proofs are surprisingly
important. In particular, in many areas of engineering, designs are evaluated
under typical, expected scenarios and failures.
When this approach is adopted to evaluate security solutions, the designers often evaluate the system under what they consider as expected adversarial attacks.
However, this is a mistake: security systems should be evaluated against arbitrary adversarial strategies, as much as possible. Of course, this does not mean that we should assume an omnipotent adversary, against whom every reasonable defense would fail; but our defenses should be designed assuming only limitations on the capabilities of the adversary, not on the adversarial strategy.
Cybersecurity and cryptography are vast, fascinating fields. The first volume
of the foundations of cybersecurity is an applied introduction to cryptography, introducing cybersecurity principles and approaches. The goal is to make
the text self-contained and limited to reasonable scope, yet provide sufficient
background in cryptography for cybersecurity practitioners.
Modern cryptology is not limited to encryption and the goal of confidentiality; it covers other threats and goals related to information and communication. This includes goals such as authenticity and integrity, which deal with the detection of tampering with information by the attacker (integrity), or with detection of impersonation by the attacker (authentication).
In particular, one of the most important mechanisms of modern cryptography, crucial to many of its applications and much of its impact, is the design of digital signature schemes.
There are two basic ways of protecting against attackers, prevention and
deterrence:
Prevention is a proactive approach: we design and implement the system
so that the attacker cannot cause damage (or can only cause reduced damage). Encryption is an example of a cryptographic means to prevent attacks, as it is usually used to prevent an attacker from disclosing sensitive information.
Deterrence is a reactive approach: we design mechanisms that will cause
damages to the attacker if she causes harm, or even when we detect an
attempt to cause harm. Effective deterrence requires the ability to detect
the attack, to attribute the attack to the attacker, and to penalize the attacker sufficiently. Furthermore, deterrence can only be effective against
a rational adversary; no penalty is guaranteed to suffice to deter an irrational adversary, e.g., a terrorist.
The use of digital signatures is one important deterrence mechanism. Signatures are used to deter attacks in several ways; in particular, a signature verified using the attacker’s well-known public key, over a given message, provides evidence that the
attacker signed that message. Such evidence can be used to punish or
penalize the attacker in different ways - an important deterrent.
Signatures may also be provided by users, as in reviews - to deter bad services
or products, to motivate the provision of good services and products, and
to allow users to choose a good service/product based on evaluations by
peer users.
Note that deterrence is only effective if the adversary is rational, and would
refrain from attacking if her expected profit (from attack) would be less than
the expected penalty.
An obvious challenge in designing and evaluating security is that we must
‘expect the unexpected’; attackers are bound to behave in unexpected ways.
As a result, it is critical to properly define the system and to identify and
analyze any risks. In practice, deployment of security mechanisms has costs,
and risk analysis would consider these costs against the risks, taking into account probabilities and costs of different attacks and their potential damages;
however, we do not consider these aspects, and only focus on ensuring specific
security goals against specific, expected kinds of attackers.
The "Encrygma"
€ 18,000
SuperEncrypted Phone
The Most Advanced Quantum Encrypted Communication System in the World.
Disruptive Offline Communication Tech
(No Internet or Cellular Connection)
Without any Servers involvement
Based on the Secret Tech "White Fog"
No data ever registered on the device or elsewhere.
Immune to:
Interception
Cyber Espionage
Remote Hacking
Spyware Infection
Malware Infection
Forensic Data Extraction
Ransomware attacks
Electronic Surveillance
You have two options , either you can buy the “Encrygma “ SuperEncrypted Phone , full details : www.Encrygma.com, at € 18,000 Euros per device or create your own encryption device by installing our SuperEncryption systems on regular Android and Windows devices at € 5000 Euros per license.
DigitalBank Vault advantages Vs. SKY ECC, BlackBerry, Phantom Secure, Encrochat
and other 'secure communication devices'
1. One-lifetime fee of € 5000 Euro.
No annual subscription fees.
2. Encryption Keys generated by the user only.
Encryption Keys never stored in the device used or anywhere else.
Encryption Keys never exchanged with the communicating parties.
3. No SIM Card needed.
4. Unlimited text messaging, audio and video messaging,
audio calls, file transfers, file storage.
5. "Air-Gapped" Offline Encryption System not connected to the Internet.
6. No Servers involved at any given time, completely autonomous system.
No third parties involved.
7. No registration of any kind - 100% anonymous without username/password.
No online Platform or Interfaces.
8. Unique, Personal, Dedicated Set of
Encryption Algorithms for each individual client.
Totally Private Encryption System.
9. Air Gap Defense Technology:
The Only Offline Communication System in the World.
10. Working cross-platform on Android Smartphones ( No SIM Cards Needed)
and Windows PC ( for office work)
Contact us
for additional information at agents@digitalbankvault.com
Telegram: @timothyweiss WhatsApp: +37257347873 You can buy any Android device and Windows laptops and transform them into a powerful encryption device by installing our set of software. The process is simple , you buy your own phones and laptops devices , choose your most trusted company ( we always advise Samsung phones and Asus laptops , then you buy from us the DigitalBank Vault SuperEncryption System and install it on the devices you bought. If you need the encryption system just for storing and transferring classified files and data, you may need just one license ( it will work for four on both Windows and Androids). If you need to communicate between two people, you will of course need to buy two licenses. If your network of people you need to communicate with is larger , you will have to buy more licenses of course. Each client is receiving a dedicated set of encrypted algorithms that means that each company (client) has a different encryption system, therefore creating a closed private internal network. Each license costs € 5000 Euros. No recurring payments are required. It’s a one-time fee. No monthly payments. Remember that our mission is to help companies achieve total, absolute secrecy over their sensitive data storage, critical file transfers and securing their confidential communications. Feel free to contact us. For more in depth information we can have a voice call or video meeting. Our SuperEncryption systems are needed in case you really need the highest level of secrecy. Our technology is above Governments level , it’s the highest level of anti interception/ anti espionage tech available to the private sector. We sell only and exclusively to reputable companies and individuals that pass our due diligence and KYC procedures. Try for 30 days ( free of charge) the DigitalBank Vault SuperEncryption System. Transform any Android device or Windows Laptop into an Unbreakable Encryption Machine
More information? Visit our website at www.DigitalBankVault.com or email us at info@digitalbankvault.com. We will be happy to assist you in achieving total secrecy over your communications.
How to buy a DigitalBank Vault SuperEncryption system? https://www.digitalbankvault.com/order-the-digitalbank-vault
More details?
Why the DBV SuperEncryption system is safer than any other solution available in the market?
How does the DigitalBank Vault SuperEncryption technology work?
CONTACT US FOR DETAILS AT: info@digitalbankvault.com
Note that integrity/authenticity and availability are separate from confidentiality, and often do not involve encryption; however, they often involve other cryptographic mechanisms, such as digital signatures, as we discussed above.
Furthermore, note that these three goals are very broad, as they apply to most cybersecurity systems; when we study the security of any given system, we should first define specific security goals for that particular system, which will usually elaborate on these three high-level goals.
One of the fundamentals of modern cryptology, which already appears
in, is an attempt to understand and define a clear model of the attacker's
capabilities and clear goals/requirements for the scheme/system. We believe
that not only in cryptology but in general insecurity, the articulation of the
attack model and of the security requirements is fundamental to the design and
analysis of security. Indeed, we consider this the first principle of cybersecurity.
This principle applies also in areas of cybersecurity where it may not be feasible to have completed rigorous models and proofs. Yet, precise articulation of
the attacker model and capabilities, as well as the security requirements, is very
important, and helps identify and avoid vulnerabilities.
A well-articulated description of the attacker model and capabilities, and of
the security requirements and assumptions, is necessary to evaluate and ensure
security for arbitrary interactions with the adversary. The adversary is limited
in its capabilities, not in its strategy.
Design and evaluation of system security should include a clear, well-defined model of the attacker capabilities (attack model) and of the exact criteria for a system, function or algorithm to be considered secure vs. vulnerable (security requirements).
Encryption deals with protecting the confidentiality of sensitive information,
which we refer to as plaintext message m, by encoding (encrypting) it into
ciphertext c. The ciphertext c should hide the contents of m from the adversary,
yet allow recovery of the original information by legitimate parties, using a
decoding process called decryption. Encryption is one of the oldest applied
sciences; some basic encryption techniques were already used thousands of
years ago.
One result of the longevity of encryption is the use of different terms. The
cryptographic encoding operation is referred to as either encryption or encipherment, and the decoding operation is referred to as decryption or decipherment. Encryption schemes are often referred to as cryptosystems or as ciphers;
in particular, we will discuss two specific types of cryptosystems referred to as
block ciphers1 and stream ciphers. We use the terms ‘encryption scheme’ and
‘cryptosystem’ interchangeably.
Cryptology is one of the most ancient sciences. We begin our discussion of
encryption schemes by discussing a few ancient ciphers, and some simple variants.
An important property that one has to keep in mind is that the design of these
ciphers have usually kept a secret; even when using a published design, users
typically kept their choice secret.
Indeed, it is harder to cryptanalysis a scheme which is not even known; where we present the Kerckhoffs’ principle, which essentially says that the security of a cipher should not depend on the secrecy of its design.
Since the ancient ciphers were considered secret, some of the ancient designs
did not use secret keys at all. Besides the historical perspective, discussing these simple, ancient ciphers helps us introduce some of the basic ideas and challenges of cryptography and cryptanalysis.
The very ancient ciphers were mono-alphabetic substitution ciphers. Monoalphabtic substitution ciphers use a fixed mapping from each plaintext character
to a corresponding ciphertext character (or some other symbol). Namely, these
ciphers are stateless and deterministic and defined by a permutation from the
plaintext alphabet to a set of ciphertext characters or symbols.
Comentarios